Для защиты тупиковых кабельных или воздушных линий с односторонним питанием достаточно максимально-токовой защиты или токовой отсечки. Но, если эти линии подключены последовательно друг за другом или соединяют между собой несколько источников питания, невозможно выполнить такие защиты селективными.

    Представим, что от шин подстанции №1 отходит линия, питающая другую подстанцию - №2. А с шин этой следующей подстанции уходит еще одна линия. При использовании МТЗ на подстанции №1 она должна срабатывать при КЗ на первой линии, но давать возможность подействовать защите подстанции №2 при КЗ на следующей.

    Но при этом она должна еще и резервировать защиту второй подстанции, для чего должна подействовать и при КЗ на линии 2. Для этого время действия защит нужно установить так, чтобы на первой подстанции выдержка была больше. К тому же придется разделить логику работы МТЗ на две или более ступеней, выставив для первой из них ток срабатывания, равный расчетному току КЗ в конце первой линии.

dz linii 1

    А теперь предположим, что с противоположной стороны линию №2 питает еще один источник энергии, не зависимый от первого. Теперь задача усложняется: токи короткого замыкания изменяются. К тому же МТЗ линий потребуется выполнить направленными.

    Есть еще один вид защит, который может помочь эффективно отключить именно линию с повреждением – дифференциальная защита. Но для ЛЭП большой протяженности ее выполнить очень непросто.

    При использовании же МТЗ и токовых отсечек устройства защиты получаются сложными, к тому же – недостаточно эффективными. Выход из ситуации – применение дистанционных защит.



    Принцип действия защиты. Дистанционная защита (ДЗ) – название, говорящее о том, что она реагирует на расстояние до точки короткого замыкания. А если говорить точнее: логика ее работы зависит от места расположения точки замыкания, которое и определяет защита.

    Делает она это с помощью устройств, называемых реле сопротивления. Их задача: косвенным образом измерить сопротивление от места расположения защиты до точки короткого замыкания. А для этого, по закону Ома, ей требуются не только ток, но и напряжение, получаемое от установленного на шинах подстанции трансформатора напряжения.

    Реле сопротивления срабатывает при условии:

    Здесь Zуст – уставка сопротивления срабатывания реле. Измеряемая величина является фиктивной, так как в некоторых режимах работы (например, при качаниях) ее физический смысл, как сопротивления, теряется.

    Уставок срабатывания, а, следовательно, и реле сопротивления у ДЗ, как правило, не менее трех. Защищаемая область делится на участки, называемые зонами. Время срабатывания для каждой из зон свое. А уставка реле сопротивления равна сопротивлению до точки КЗ в конце соответствующей зоны. Для пояснения вспомним пример с подстанциями и линиями.

dz linii 2

    Уставка 1 зоны ДЗ рассчитывается так, чтобы она защищала только свою отходящую линию. Но не до самого конца, а с учетом погрешности измерения сопротивления – 0,7-0,85 ее длины. При срабатывании первой зоны ДЗ линия отключается с минимально возможной выдержкой времени, так как КЗ находится гарантированно на ней.

    Вторая зона ДЗ резервирует отказ защиты следующей подстанции. Для чего она реагирует на КЗ в конце линии №2. И первая зона ДЗ для выключателя второй линии от подстанции №2 выставлена на сопротивление до той же самой точки КЗ, но уже от шин этой подстанции. Но выдержка времени 2 зоны ДЗ подстанции №1 больше, чем 1 зоны ДЗ подстанции №2. Этим обеспечивается требуемая селективность: выключатель второй линии от подстанции №2 отключится раньше, чем отработает реле времени защиты на подстанции №1.

    Третья зона дистанционной защиты призвана быть резервом для защиты следующей линии, если она есть в наличии. Большего количества зон не предусматривается.

    Устройство и работа комплекта дистанционной защиты. Тем не менее, на одних реле сопротивления и реле времени такую защиту не выполнить. На практике она включает в себя несколько функциональных блоков.

    Пусковые органы. Это токовые реле или реле полного сопротивления. Их задача: определить наличие КЗ в защищаемой цепи и запустить работу остальных устройств защиты.
Дистанционные органы. Набор реле сопротивления для определения зоны срабатывания и дистанции до места КЗ.
    Устройство, формирующее выдержки времени для зон защиты. Это – обычные реле времени.
Реле направления мощности. На самом деле он применяется редко, так как реле сопротивления конструктивно обладают собственной диаграммой направленности, не позволяющей срабатывать защите при КЗ «за спиной». В итоге исключается срабатывание защиты при замыканиях в направлении, противоположном защищаемой линии.
    Органы блокировок, одна из которых - защита от исчезновения напряжения. При неисправностях цепей ТН ДЗ выводится из действия. Следующая блокировка работает при качаниях в системе. При их возникновении обычно происходит снижение напряжения на шинах и увеличение тока в защищаемых линиях. Эти изменения воспринимаются дистанционными органами защиты как уменьшение сопротивления, из-за чего также не исключена ложная работа защиты.

    Применение дистанционной защиты.

    Дистанционная защита используется в сетях с питанием от двух и более источников. Это линии связи напряжением 35, 110 кВ и выше, по которым осуществляется транзит электроэнергии. Особенно эффективна и незаменима ДЗ в кольцевых схемах энергоснабжения, применение которых очень часто для единой энергетической системы страны.

    Для всех сетей, где установлена ДЗ, она является основной защитой.

    Конструкция ДЗ на электромеханической базе предполагает наличие большого количества элементов: обычных реле, трансформаторов. Для ее размещения выделяется целая панель. Современные же варианты микропроцессорных защит умещаются в одном терминале, соседствуя с другими их видами, а также – возможностью фиксирования срабатываний защит, работы блокировок, запись осциллограмм аварийных процессов. Совмещением нескольких устройств в одном терминале обеспечивается не только компактность, но и удобство в эксплуатации релейной защиты линии.


Рекомендуйте эту статью другим!



Система заземления TN-C 2
янв 05, 2014 2264

Система заземления TN-C, схема, особенности, видео, достоинства и недостатки

Зачем каждому человеку знать о том, что представляют собой системы заземления? Все…
Контроллеры СИКОН С50 1
апр 14, 2014 3083

Контроллеры СИКОН С50

СИКОН С50 - это сетевой индустриальный контроллер, с помощью которого осуществляется…
Классификация автоматических выключателей
мая 14, 2013 2820

Классификация высоковольтных выключателей, общее сравнение, достоинства и недостатки

Выключатель – это коммутационный аппарат, предназначенный для коммутации (отключения и…
Протоколы последовательного обмена
нояб 22, 2015 2256

Протоколы последовательного обмена

Протокол SPI. Общие сведения. Интерфейс SPI (Serial Peripheral Inter­face),…
нояб 30, -0001 10759

Цеховые подстанции системы электроснабжения

Цеховые трансформаторные подстанции напряжением 6—10/ (0,4—0,69) кВ выполняются, как…