рис 1.25Вольт-амперная характеристика (ВАХ) полупроводникового диода на постоянном токе (статическая характеристика).

Вольт-амперная характеристика — это зависимость тока i, протекающего через диод, от напряжения

u

, приложенного к диоду (рис. 1.25). Вольт-амперной характеристикой называют и график этой зависимости.

Вначале будем полагать (см. рис. 1.25), что обратное напряжение (

u

< 0) по модулю меньше напряжения пробоя p-n-перехода. Тогда в первом приближении можно считать, что вольт-амперная характеристика диода определяется уже рассмотренным идеализированным описанием характеристики

p

-

n

-перехода:

i

=

is

· (

eu

/


φr


- 1)

Тепловой ток is обусловлен генерацией неосновных носителей в областях, прилегающих к области

p

-

n

-перехода. Однако часто это идеализированное описание дает неприемлемую погрешность. Особенно большая погрешность возникает при вычислении тока диода, включенного в обратном направлении (U < 0, i < 0). Вычисленный по рассматриваемому выражению ток (

i

= -is при |

u

| >> (φт)) для кремниевых диодов оказывается на несколько порядков меньше реального. В то же время стоит отметить, что в некоторых расчетах обратным током вообще можно пренебречь.

Укажем причины отличия характеристик реальных диодов от идеализированных. Обратимся к прямой ветви вольт-амперной характеристики диода (

u

> 0,

i

> 0). Она отличается от идеализированной из-за того, что в реальном случае на нее влияют:


  • сопротивления слоев полупроводника (особенно базы);


  • сопротивления контактов металл-полупроводник.


Важно отметить, что сопротивление базы может существенно зависеть от уровня инжекции (уровень инжекции показывает, как соотносится концентрация инжектированных неосновных носителей в базе на границе перехода с концентрацией основных носителей в базе). Влияние указанных сопротивлений приводит к тому, что напряжение на реальном диоде при заданном токе несколько больше (обычно на доли вольта), чем это следует из формулы.

Обратимся к обратной ветви (

u

< 0, i < 0). Основные причины того, что реально обратный ток обычно на несколько порядков больше тока is, следующие:


  • термогенерация носителей непосредственно в области

    p

    -

    n

    -перехода;


  • поверхностные утечки.


Термогенерация в области p-n-перехода оказывает существенное влияние на ток потому, что область перехода обеднена подвижными носителями заряда, и процесс рекомбинации (обратный процессу генерации и в определенном смысле уравновешивающий его) здесь замедлен.

При комнатной температуре для кремниевых приборов ток термогенерации обычно существенно превышает тепловой ток is.

Для ориентировочных расчетов можно считать, что с повышением температуры ток is удваивается примерно на каждые 5°С, а ток термогенерации удваивается примерно на каждые 10°С. При температуре около 100°С ток is сравнивается с током термогенерации.

Поверхностные утечки часто составляют подавляющую долю обратного тока. Их причинами являются:


  • поверхностные энергетические уровни, обеспечивающие активные процессы генерации и рекомбинации;


  • молекулярные и ионные пленки, шунтирующие p-n-переход.


При увеличении модуля обратного напряжения ток утечки вначале изменяется линейно, а затем более быстро. ток утечки характеризуется так называемой «ползучестью» — изменением в течение времени от нескольких секунд до нескольких часов.

При практических ориентировочных расчетах иногда принимают, что общий обратный ток кремниевого диода увеличивается в 2 раза или в 2,5 раза на каждые 10°С.

Для примера изобразим характеристики выпрямительного кремниевого диода Д229А при различных температурах (максимальный средний прямой ток — 400 мА, максимальное импульсное обратное напряжение — 200 В). Прямые ветви характеристик представлены на рис. 1.26, а обратные (до режима пробоя) — на рис. 1.27. рис 1.26 рис 1.27

Обратимся к режиму пробоя полупроводникового диода и соответствующему участку обратной ветви вольт-амперной характеристики (на рис. 1.27 этот участок не показан).

Диоды многих конкретных типономиналов не предназначены для работы в режиме пробоя. Для них этот режим работы — аварийный. Если при пробое ток в цепи не ограничивается (например, внешним сопротивлением), то диод выходит из строя. В таких приборах при чрезмерном увеличении обратного напряжения (по модулю) практически сразу же начинается тепловой пробой (участок электрического пробоя практически отсутствует).

Напряжение начала пробоя для рассматриваемых диодов — величина нестабильная (пробой начинается при

u

= -

u

проб


,

где

u

проб


— так называемое напряжение пробоя — положительная величина). Изобразим соответствующую вольт-амперную характеристику (рис. 1.28). рис 1.28 1.29

Диоды некоторых конкретных типов спроектированы с расчетом на работу в режиме лавинного пробоя в течение некоторого короткого времени. Такие диоды называют лавинными. Если отрезок времени, в течение которого диод находится в режиме лавинного пробоя, невелик, то его

p

-

n

-переход не успевает перегреться и диод не выходит из строя. Иначе лавинный пробой перейдет в тепловой и диод выйдет из строя. Изобразим вольт-амперную характеристику для лавинного диода (рис. 1.29).

Лавинные диоды, как правило, более надежны в сравнении с обычными кратковременные (перенапряжения не выводят лавинный диод из строя).

Для некоторых конкретных типов диодов режим пробоя является основным рабочим режимом. Это так называемые стабилитроны, рассматриваемые ниже.



Зависимость барьерной емкости диода от напряжения.

Приведем график зависимости общей емкости Сд кремниевого диода 2Д212А от обратного напряжения (основной вклад в общую емкость вносит барьерная емкость) (рис. 1.30). рис 1.30 1.31

Для этого диода максимальный постоянный (средний) прямой ток — 1 А, максимальное постоянное (импульсное) обратное напряжение — 200 В.



Временные диаграммы тока и напряжения диода при его переключении.

Обратимся к схеме на рис. 1.31.

Предполагается, что вначале ключ К подключает источник напряжения

u

1


, а затем, в момент времени t = 0, источник напряжения

u

2


.

Предполагается также, что напряжения

u

1


и

u

2


значительно больше прямого падения напряжения на диоде. Изобразим соответствующие временные диаграммы (рис. 1.32). рис 1.32

До момента времени t = 0 протекает ток i1, который с учетом принятого условия

u

1


>>

u

определяется выражением

i

1


=

u

1


/

R

Сразу после переключения ключа К и в течение так называемого времени рассасывания tрас протекает ток i2, который ограничивается практически только сопротивлением R, т. е.

i

2


= - (

u

1


/

R

)

В этот отрезок времени в базе диода уменьшается (рассасывается) заряд накопленных при протекании тока неравновесных носителей. Заряд уменьшается в результате рекомбинации и перехода неосновных носителей в эмиттер.

По истечении времени tpac концентрация неосновных носителей в базе на границе p-n-перехода становится равной равновесной. В глубине же базы неравновесный заряд еще существует. Длительность времени рассасывания прямо пропорциональна среднему времени жизни неосновных носителей в базе и зависит от соотношения токов i1 и i2 (чем больше по модулю ток i2, тем меньше, при заданном токе i1, время рассасывания).

В момент времени t1 напряжение на диоде начинает быстро возрастать по модулю, а ток i уменьшаться по модулю (спадать). Соответствующий отрезок времени tcп называют временем спада. Время спада отсчитывают до того момента t2 которому соответствует достаточно малое (по модулю) значение тока i3. Время спада зависит от времени жизни носителей, а также от барьерной емкости диода и от сопротивления R схемы. Чем больше указанные емкость и сопротивление R, тем медленнее спадает ток.

Отрезок времени tвос = tpac + tcп называется временем восстановления (временем обратного восстановления).

После завершения переходного процесса (момент времени t3) через диод течет ток iобр ycm — обратный ток в установившемся режиме (определяемый по статической вольт-амперной характеристике диода).

Для упомянутого выше диода 2Д212А типовое время восстановления — 150 нc (150 · 10~9с) при i1 = 2 А (импульсный ток) и i2 = 0,2 А.



Параметры диодов.



Для того, чтобы количественно охарактеризовать диоды, используют большое количество (измеряемое десятками) различных параметров. Некоторые параметры характеризуют диоды самых различных подклассов. Другие же характеризуют специфические свойства диодов только конкретных подклассов.

Укажем наиболее широко используемые параметры, применяемые к диодам различных подклассов:

Iпр макс — максимально допустимый постоянный прямой ток;

Uпp — постоянное прямое напряжение, соответствующее заданному току;

Uобр макс — максимально допустимое обратное напряжение диода (положительная величина);

Iобр макс — максимально допустимый постоянный обратный ток диода (положительная величина; если реальный ток больше, чем Iобр макс , то диод считается непригодным к использованию);

Rдиф — дифференциальное сопротивление диода (при заданном режиме работы).

В настоящее время существуют диоды, предназначенные для работы в очень широком диапазоне токов и напряжений. Для наиболее мощных диодов Iпр макс составляет килоамперы, a Uобр макс — киловольты.



Рекомендуйте эту статью другим!