рис. 2.25Как уже отмечалось, операционные усилители в настоящее время используются в самых различных электронных устройствах. Их широко применяют как в аналоговых, так и в импульсных устройствах электроники. В то же время существуют и часто используются типовые линейные схемы на основе операционных усилителей. Такие типовые схемы должен знать каждый инженер, использующий электронные устройства. Именно такие схемы рассматриваются ниже.

Очень полезно овладеть достаточно простыми приемами ручного анализа электронных схем на основе операционных усилителей. Это значительно облегчит понимание принципа действия конкретных устройств электроники и будет способствовать получению достоверных результатов машинного анализа. Указанные приемы анализа основаны на ряде допущений, принимаемых в предположении, что используемые операционные усилители достаточно близки к идеальным. Практика расчетов показывает, что результаты, получаемые на основе допущений, имеют вполне приемлемую погрешность.

Примем следующие допущения:

● Входное сопротивление операционного усилителя равно бесконечности, токи входных электродов равны нулю (Rвх → ∞, i+ = i).

● Выходное сопротивление операционного усилителя равно нулю, т. е. операционный усилитель со стороны выхода является идеальным источником напряжения (Rвых = 0).

● Коэффициент усиления по напряжению (коэффициент усиления дифференциального сигнала) равен бесконечности, а дифференциальный сигнал в режиме усиления равен нулю (при этом не допускается закорачивания выводов операционного усилителя).

● В режиме насыщения напряжение на выходе равно по модулю напряжению питания, а знак определяется полярностью входного напряжения. Полезно обратить внимание на тот факт, что в режиме насыщения дифференциальный сигнал нельзя всегда считать равным нулю.

● Синфазный сигнал не действует на операционный усилитель.

напряжение смещения нуля равно нулю.

Рассмотрим схему инвертирующего усилителя (рис. 2.25), из которой видно, что в ней действует параллельная обратная связь по напряжению.

рис. 2.25

Так как i= 0, то в соответствии с первым законом Кирхгофа i1 = i2.

Предположим, что операционный усилитель работает в режиме усиления, тогда uдиф = 0. В соответствии с этим на основании второго закона Кирхгофа получим

i1 = uвх / R1

i2 = − uвых / R2

Учитывая, что i1 = i2, получаем

uвых = − uвх · R2 / R1

Таким образом, инвертирующий усилитель характеризуется коэффициентом усиления по напряжению, равным

Кu = − R2 / R1

Например, если R1 = 1кОм, R2 =10 кОм, тогда

uвых = − 10 · uвх

Для уменьшения влияния входных токов операционного усилителя на выходное напряжение в цепь неинвертирующего входа включают резистор с сопротивлением R3 (рис. 2.26), которое определяется из выражения

R3 = R1 // R2 = R1 · R2 / ( R1 + R2 )

рис. 2.26

Входное сопротивление инвертирующего усилителя на низких частотах значительно ниже собственного входного сопротивления операционного усилителя. Это полностью соответствует сделанному раннее выводу о том, что параллельная отрицательная обратная связь, имеющая место в схеме, уменьшает входное сопротивление. Учитывая, что uдиф ~ 0, легко заметить, что входное сопротивление усилителя на низких частотах приблизительно равно R1.

Выходное сопротивление инвертирующего усилителя на низких частотах Rвых.ос существенно меньше выходного сопротивления на низких частотах Rвых собственно операционного усилителя. Это является следствием действия отрицательной обратной связи по напряжению.

Можно показать, что

Rвых.ос = Rвых / ( 1 + К · R1 / R2 )

где К — коэффициент усиления по напряжению операционного усилителя.