рис. 2.39Усилителем мощности называют усилитель, предназначенный для обеспечения заданной мощности нагрузки Рн при заданном сопротивлении нагрузки RH. Усилитель мощности является примером устройств силовой электроники. Основная цель при разработке таких устройств состоит в том, чтобы отдать нагрузке заданную мощность.

В противоположность устройствам силовой электроники при проектировании устройств информативной (информационной) электроники основная цель состоит в том, чтобы выполнить заданную обработку сигнала и получить выходные сигналы, содержащие ту или иную информацию о входных.

В качестве примера можно назвать устройства, определяющие, в какой момент времени входной сигнал принимает максимальное значение. В устройствах информативной электроники, как правило, стремятся снизить мощность обрабатываемых сигналов до такого уровня, при котором помехоустойчивость устройства еще приемлема. В устройствах силовой электроники такую задачу в соответствии с изложенным нельзя ставить в принципе.

Реальное устройство может содержать черты как силовой, так и информативной электроники, но об указанном различии следует постоянно помнить. Необходимо отметить, что функции устройств информативной электроники все чаще берут на себя микропроцессоры. Но микропроцессоры, естественно, не в состоянии выполнять функции устройств силовой электроники.

На усилитель мощности, как правило, приходится подавляющая часть мощности, потребляемая тем устройством, составной частью которого он является. Поэтому всемерное внимание уделяется повышению коэффициента полезного действия усилителя мощности. Другой важной проблемой является уменьшение габаритных размеров и веса усилителя мощности, так как они часто определяют габаритные размеры и вес всего устройства. Проблемы повышения коэффициента полезного действия и уменьшения габаритных размеров тесно связаны, потому что габаритные размеры и вес усилителя сильно зависят от габаритных размеров и веса охладителей. Чем больше коэффициент полезного действия, тем меньше габаритные размеры и вес усилителя.

Транзисторы усилителей мощности работают в режиме большого сигнала, когда амплитуды переменных составляющих токов и напряжений достаточно велики. При этом заметно проявляются нелинейные свойства транзисторов и возникают нелинейные искажения входного сигнала. С другой стороны, обычно не допускается, чтобы выходной сигнал был сильно искаженным.

Уровень нелинейных искажений и КПД усилителя мощности существенно зависят от начального режима работы, причем нелинейные искажения обусловливаются нелинейностью не только входных, но и выходных характеристик транзисторов, так как они работают в режиме большого сигнала. Минимально возможный уровень нелинейных искажений можно обеспечить в режиме класса «А», а максимально возможный КПД — в режиме классов «В» или «АВ».

Усилители мощности бывают однотактные и двухтактные, причем первые работают в режиме класса «А», а вторые — в режиме классов «В» или «АВ». Однотактные усилители мощности применяются при относительно малых выходных мощностях (единицы ватт).

В соответствии с требованием обеспечить заданную мощность нагрузки Рн при разработке усилителя мощности должен быть решен вопрос о соответствующем выборе напряжения питания усилителя Е. Предположим, что усилитель с указанным напряжением питания может создать на нагрузке синусоидальный сигнал с максимально возможной амплитудой напряжения

Тогда максимально возможная мощность нагрузки Рн max определится выражением

Рн max = ( Um / √2 )2 · 1 / Rн = Um2 / ( 2 · Rн ) = E2 / ( 8 · Rн )

Откуда

Um = E / 2

E = 2 · √ ( Рн max · Rн · 2 )

Если по каким-либо причинам выбрать полученное значение Е не представляется возможным, для согласования усилителя и нагрузки можно использовать трансформатор. Однако трансформатор часто является нежелательным элементом усилителя мощности, так как это сравнительно дорогое и сложное в изготовлении устройство.

Рассмотрим согласование нагрузки и усилителя с помощью трансформатора (рис. 2.39).

рис. 2.39

Через W1 и W2 обозначено соответственно количество витков первичной и вторичной обмоток трансформатора, а через uвых и Rвых — соответственно выходное напряжение и выходное сопротивление усилителя.

При определении мощности нагрузки эту схему можно заменить эквивалентной схемой, приведенной на рис. 2.40.

рис. 2.40

В ней через R′н обозначено приведенное сопротивление нагрузки

R′н = Rн / n2

где n — коэффициент трансформации (n = W2 / W1 ).

Изменяя коэффициент трансформации, можно добиться необходимого согласования усилителя и нагрузки, причем известно, что максимальная мощность в нагрузку отдается при Rвых = R′н. Отсюда определим оптимальное значение коэффициента трансформации:

nопт = √ ( Rн / Rвых )


Рекомендуйте эту статью другим!



рис. 1.141
окт 17, 2016 519

Влияние различных факторов на выходное напряжение операционного усилителя

При практическом использовании операционного усилителя необходимо учитывать, что…
рис. 1.126
сен 02, 2016 1423

Фотодиод, фототранзистор, фототиристор, оптрон, разновидности индикаторов

Фотодиод Рассмотрим устройства, основные физические процессы, характеристики и параметры…
Принцип действия газовой защиты трансформатора 2
апр 04, 2014 5032

Принцип действия газовой защиты трансформатора

Газовая защита относится к основным обязательным защитам трансформатора, поскольку…
Правила присоединения к электрическим сетям
фев 05, 2014 9965

Правила присоединения к электрическим сетям

Вопрос технологического присоединения общественных зданий, частных домов, магазинов и…
датчики измерения температуры 1
мая 26, 2016 5130

Датчики измерения температуры. Типы, принцип работы

Практически в любой современной аппаратуре есть датчики температуры. Это устройство,…