Прикладные исследования по использованию эффекта сверхпроводи-мости, достигаемого у сверхпроводящих материалов (сверхпроводников) при температурах ниже критических, ведутся уже на протяжении многих десятков лет. В начале 60-х годов на базе сверхпроводящих материалов и криогенной техники с использованием в качестве хладагента жидкого гелия (температура кипения жидкого гелия – 4,2 К при нормальном давлении) зародились низкотемпературные сверхпроводниковые технологии (НТСП-технологии). Основу освоенных промышленностью сверхпроводящих материалов составляли два вещества: сплав Nb-Ti (с параметрами: критическая температура – 9,6 К при нулевых магнитном поле и токе, критическое магнитное поле – 12 Тл при 4,2 К и нулевом токе, критическая плотность тока – 3-109 А/м-2 при 4,2 К и в магнитном поле 5 Тл) и интерметаллическое соединение Nb3Sn (с параметрами: критическая температура – 18,3 К при нулевых магнитном поле и токе, критическое магнитное поле – около 22 Тл при 4,2 К и нулевом токе, критическая плотность тока – более 109 А? м-2 при 4,2 К и в магнитном поле 10 Тл). Стоимость первого материала составляла несколько долларов за 1 кА?м, стоимость второго была, примерно, равной 10 долларам за 1 кА/м.

Сверхпроводящие провода представляли собой сложные конструкции из разнородных материалов с ультратонкими нитями собственно сверхпроводника. Технология их изготовления была освоена в США, СССР, Японии, Германии, Англии. В ЭНИН и ВНИИКП были созданы жесткие и гибкие кабели переменного тока мощностью до 3 ГВА (см. рис. 28). 

     Рис. 28. НТСП-кабель на 3 ГВА (разработка ВНИИКП). 
     Несмотря на достигнутые успехи в области низкотемпературных сверхпроводников (НТСП), применение НТСП-кабелей сдерживалось не-обходимостью использования для охлаждения не возобновляемого и дорогостоящего жидкого гелия (цена жидкого гелия – 5–10 долларов за 1 литр). 
     Мощным толчком к развитию сверхпроводниковых технологий стало открытие в 1986 г. высокотемпературных сверхпроводников (ВТСП) с критическими температурами перехода в сверхпроводящее состояние, превышающими температуру 77,3 К, то есть температуру кипения жидкого азота при нормальном давлении. Соответственно, в ВТСП-технологиях появилась возможность использовать в качестве хладагента вместо не возобновляемого и дорогостоящего жидкого гелия (5–10 долларов за 1 литр) значительно более дешевый жидкий азот (0,1–0,3 долларов за 1 литр), упростить систему криостатирования, повысить ее надежность в эксплуатации, а также сократить эксплуатационные расходы. 
     Технология керамических сверхпроводников еще находится в стадии становления и развития. Однако уже к середине 90-х годов были разработаны конструкции 1-го поколения ВТСП-проводов на основе соединения Bi2Sr2Ca2Cu3Ox (Bi-2223) (критическая температура – 104 К, критическая плотность тока –108 А/м-2). В настоящее время в США, Японии и странах Европы налажен опытно-промышленный выпуск ВТСП-проводов 1-го поколения на основе висмута с использованием так называемой технологии "порошок – в трубе”, когда исходный порошок соединения запрессовывается в металлическую серебряную трубку, которая многократно обжимается и термообрабатывается. Эта технология сложна и дорога. Стоимость ВТСП-проводов (более 200 долларов за 1 кА/м) более чем на порядок превышает стоимость медного провода (около 15 долларов за 1 кА/м). По оценкам производителей при развитии массового производства стоимость ВТСП-проводов 1-го поколения может быть снижена до 50 долларов за 1 кА?м. 
     Значительные перспективы практического применения ВТСП-технологий открылись при появлении в 2002-2003 годах высокотемпературных сверхпроводников 2-го поколения на основе иттриевых керамик. Плотность тока в сверхпроводниках 2-го поколения в несколько раз выше, чем в сверхпроводниках 1-го поколения. Увеличение плотности тока и использование сравнительно недорогих материалов в сверхпроводниках 2-го поколения дают основание полагать, что стоимость ВТСП-проводов 2-го поколения при массовом производстве может снизиться до 20-30 долларов за 1 кА/м, что сделает сверхпроводящие кабели экономически более конкурентно-способными по отношению к кабелям традиционного исполнения. 
     В последние годы многие компании из различных стран мира ведут интенсивные разработки в области использования сверхпроводящих кабелей на основе ВТСП-технологий (см. табл. 4).

Сверхпроводящие кабели     В настоящее время два ВТСП-силовых кабеля длиной по 30 м каждый в течение нескольких лет успешно проходят испытания в реальных энергосистемах (проект Southwire и проект NKT Cable). Японская корпорация Sumitomo Electric совместно с энергетической компанией TEPCO завершила длительные испытания трехжильного ВТСП-кабеля на напряжение 66 кВ (1000 А) длиной 100 м. В 2003 г. группа компаний, включая корпорацию Sumitomo Electric и компанию Super Power, начала реализацию проекта по производству ВТСП-кабеля длиной 350 м с напряжением 34,5 кВ (800 А) для его прокладки между двумя подстанциями Нью-Йорка. Компания NEXANS и китайская компания Innopower Superconductor Cable ведут испытания трехфазного кабеля 35 кВ (2000 А) длиной 30 м, смонтированного на севере Китая в провинции Юннань. Кроме того, ведутся и другие крупные проекты: в Японии (ВТСП-кабель 77 кВ (1000 А) длиной 500 м); в США (ВТСП-кабель 138 кВ (2400 А) длиной 660 м); в Южной Корее (ВТСП-кабели длиной 30 и 100 м). Компания Pirelli ведет работы по разработке кабелей 115 кВ (400 МВА), кабелей 132 кВ (680 МВА) для электроэнергетических систем Италии и кабелей 225 кВ (1000 МВА) для энергосистем Франции. 
     Таким образом, находящиеся в настоящее время в опытно-промышленной эксплуатации сверхпроводящие силовые кабели имеют длину до 500-600 м. В ближайшие несколько лет их длина может быть увеличена до 3 км. И хотя к настоящему времени они обеспечивают передачу мощности до 500 МВА, в будущем они реально могут обеспечить передачу очень большой мощности (до 10 ГВА и более). 
     В России работы по сверхпроводящим кабелям ведутся в зна-чительно меньших масштабах (ВНИИКП, НЦ "Курчатовский институт”, ВНИИНМ, ВЭИ, ОЭЭП РАН). В ОАО "ВНИИКП” совместно с мексиканской компанией "Condumex” была разработана, изготовлена и успешно испытана модель ВТСП-кабеля длиной 5 м. Очевидно, активизации работ по сверхпроводящим кабелям будет способствовать разработанная в РАО "ЕЭС России” программа по созданию и применению в схемах питания мегаполисов кабелей на основе ВТСП-технологии. Планируется к 2009 году разработать и провести испытания моделей кабелей длиной до 500 м, а к 2012 году – длиной до 1 км. 
     ВТСП-кабели имеют два типа конструкции, принципиально отличающиеся друг от друга: ВТСП-кабели c холодным диэлектриком (CD) и ВТСП-кабели c теплым диэлектриком (RTD). 
     В кабеле с холодным диэлектриком (см. рис. 29, 30) элемент кабеля окружен коаксиальным сверхпроводящим слоем, предназначенным для экранирования магнитного поля. Диэлектрик, «пропитанный» жидким азотом, располагается между токопроводящей жилой из ВТСП-материала и внешним экранирующим слоем. Преимуществом такой конструкции является возможность устранения потерь на переменном токе, вызванных воздействием магнитного поля, создаваемого токами в соседних фазах, а также вихревыми токами, наведенными в металлических частях соседнего оборудования. 
                  1,2 – Жидкий азот; 3 – ВТСП-токопроводящая жила; 4 – Диэлектрик; 5 – ВТСП-экран; 6 – Криостат; 7 – Оболочка. 
      Рис. 29. Конструкция ВТСП-кабеля с холодным диэлектриком (CD). 
      Рис. 30. Конструкция трехжильного ВТСП-кабеля с холодным диэлектриком. 
      В кабелях с теплым диэлектриком (рис. 31) нет такого сверхпроводящего слоя. Данная конструкция требует меньшего расхода сверхпроводящего материала, в ней применяются обычные изоляционные материалы, поэтому стоимость этих кабелей существенно ниже. Так как кабель с теплым диэлектриком конструктивно сходен с обычным кабелем, то при его изготовлении, монтаже и соединении можно использовать многократно проверенные технологии. Однако ВТСП-кабель с теплым диэлектриком по техническим свойствам уступает ВТСП-кабелю с холодным диэлектриком.      
      
Сверхпроводящие кабели россия

      1 – Жидкий азот; 2 – ВТСП-токопроводящая жила; 3 – Криостат, 4 – Диэлектрик; 5 – Экран и оболочка. 

       Рис. 31. Конструкция ВТСП-кабеля с теплым диэлектриком (RTD).    
      ВТСП-кабели по сравнению с традиционно применяемыми кабелями имеют существенные преимущества: большая пропускная способность при использовании более низкого класса номинального напряжения, при мень-ших потерях, меньшем весе и компактности; пожаробезопасность; экологичность и др. Проведенные сравнительные технико-экономические расчеты в НЦ «Курчатовский институт», ВНИИКП, ВЭИ показали, что даже при сегодняшней высокой цене на ВТСП-материалы, полные затраты (учитывая прокладку и эксплуатационные расходы) для обычных кабелей и ВТСП-кабелей примерно одинаковы. Если в ближайшие годы разработчикам и производителям сверхпроводящих материалов удастся добиться существенного снижения цены на ВТСП-материалы, которые составляют до 90 % в стоимости кабеля, то выгода от применения ВТСП-кабелей станет очевидной. 
     Учитывая преимущества ВТСП-кабелей и интенсивность исследований и разработок в области ВТСП-технологий следует ожидать, что в ближайшее время ВТСП-кабели будут все более широко использоваться для глубокого ввода электроэнергии в крупные мегаполисы и энергоемкие комплексы, для замены отслуживших свой срок КЛ традиционного исполнения при необходимости увеличения передаваемой мощности и при повышенных требованиях с точки зрения пожаробезопасности и экологии, а также для вывода мощности от крупных электростанций и для преодоления водных преград. 
     По оценкам экспертов массовое применение сверхпроводящих кабелей может начаться в 2014-2018 годах.
     Читайте о диагностике кабелей на нашем сайте.


Рекомендуйте эту статью другим!



Основная система уравнивания потенциалов
янв 27, 2014 5191

Основная система уравнивания потенциалов

Система уравнивания потенциалов (СУП) используется для того, чтобы обеспечить одинаковый…
Стеклянные изоляторы 1
нояб 17, 2014 2580

Стеклянные изоляторы, типы, разновидности, эксплуатация

Стеклянные подвесные изоляторы служат для изоляции проводов от опор высоковольтных линий…
рис. 2.73 а
нояб 30, 2016 987

Выпрямители

В маломощных источниках питания (до нескольких сотен ватт) обычно используют однофазные…
расчет токов кз
июль 29, 2013 33823

Расчет токов короткого замыкания (КЗ)

В задании к курсовому проекту приводятся данные об эквивалентных параметрах сети со…
апр 04, 2013 5067

Измерение сопротивления изоляции, принципы, формула, физический смысл

Прибор, который используется для определения сопротивления изоляции называется…