Выбор числа и мощности трансформаторов на подстанциях определяется величиной и характером электрических нагрузок (требуемой надежностью электроснабжения и характером потребления электроэнергии), территориальным размещением нагрузок, их перспективным изменением и при необходимости обосновывается техникоэкономическими расчетами.

     Как правило, в системах электроснабжения применяются одно и двухтрансформаторныеподстанции.Применение трехтрансформаторных подстанций вызывает дополнительные капитальные затраты и повышает годовые эксплуатационные расходы. Трехтрансформаторные подстанции используются редко, как вынужденное решение при реконструкции, расширении подстанции, при системе раздельного питания силовой и осветительной нагрузок, при питании резкопеременных нагрузок.

     На крупных подстанциях (ГПП) применяются в основном два трансформатора (два независимых источника питания), так как через такие подстанции должны обеспечиваться электроэнергией электроприемники I, II и III категорий надежности электроснабжения.

     При нескольких пунктах приема электроэнергии на предприятии на ГПП, а также при питании предприятия по схеме глубокого ввода на ПГВ допускается применять по одному трансформатору при обеспечении послеаварийного питания нагрузок по связям вторичного напряжения с соседними подстанциями (ПГВ, ГПП), с ТЭЦ или другими ИП. При магистральном питании однотрансформаторных ПГВ по линиям 35—220 кВ ближайшие подстанции рекомендуется присоединять к разным линиям или цепям с последующим использованием в послеаварийных режимах связей на вторичном напряжении.

     Однотрансформаторные ТП 6—10/0,4—0,23 кВ применяются при питании нагрузок, допускающих перерыв электроснабжения на время не более одних суток, необходимых для ремонта или замены поврежденного элемента (питание электроприемников III категории), а также для питания электроприемников II категории, при условии резервирования мощности по перемычкам на вторичном напряжении или при наличии складского резерва трансформаторов.

     Однотрансформаторные ТП выгодны еще и потому, что если работа предприятия сопровождается периодами малых нагрузок, то за счет наличия перемычек между ТП на вторичном напряжении можно отключать часть трансформаторов, создавая этим экономически целесообразный режим работы. Под экономичным понимается такой режим работы, который обеспечивает минимальные потери мощности в трансформаторах. В данном случае решается задача выбора оптимального количества работающих трансформаторов.

     Такие ТП могут быть экономичны и в плане максимального приближения напряжения 6—10 кВ к электроприемникам, поскольку за счет децентрализации трансформирования электрической энергии уменьшается протяженность сетей до 1 кВ. В этом случае вопрос решается в пользу применения двух однотрансформаторных по сравнению с одной двухтрансформаторной подстанцией.

     Двухтрансформаторные ТП применяются при преобладании электроприемников I и II категорий. При этом мощность трансформаторов выбирается такой, чтобы при выходе из работы одного Другой трансформатор с учетом допустимой перегрузки принял бы на себя нагрузку всех потребителей (в этой ситуации можно временно отключить электроприемники III категории). Такие подстанции желательны и независимо от категории потребителей, но при наличии неравномерного суточного или годового графика нагрузки. В этих случаях выгодно менять присоединенную мощность трансформаторов, например, при наличии сезонных нагрузок, одно или двухсменной работы со значительными изменениями загрузки смен.

     Электроснабжение населенного пункта, микрорайона города, цеха, группы цехов или всего предприятия может быть обеспечено от одной или нескольких ТП. Целесообразность сооружения одно или двухтрансформаторных подстанций определяется в результате техникоэкономического сравнения нескольких вариантов системы электроснабжения. Критерием выбора варианта является минимум приведенных затрат на сооружение системы электроснабжения. Сравниваемые варианты должны обеспечивать требуемый уровень надежности электроснабжения.

     В системах электроснабжения промышленных предприятий наиболее распространены следующие единичные мощности трансформаторов: 630, 1000,1600 кВА, в электрических сетях городов — 400, 630 кВА. Практика проектирования и эксплуатации показала необходимость применения однотипных трансформаторов одинаковой мощности, так как разнообразие их создает неудобства в обслуживании и вызывает дополнительные затраты на ремонт.

     В общем случае выбор мощности трансформаторов производится на основании следующих основных исходных данных: расчетной нагрузки объекта электроснабжения, продолжительности максимума нагрузки, темпов роста нагрузок, стоимости электроэнергии, нагрузочной способности трансформаторов и их экономичной загрузки.

     Основным критерием при выборе единичной мощности так же, как и количества трансформаторов, является минимум приведенных затрат, полученный на основе техникоэкономического сравнения вариантов.

     Ориентировочно выбор единичной мощности трансформаторов может выполняться по удельной плотности расчетной нагрузки (кВА/м2) и полной расчетной нагрузки объекта (кВА). При удельной плотности нагрузки до 0,2 ВА/м2 и суммарной нагрузке до 3000 кВА целесообразно применять трансформаторы 400; 630; 1000 кВА — с вторичным напряжением 0,4/0,23 кВ. При удельной плотности и суммарной нагрузке выше указанных значений более экономичны трансформаторы мощностью 1600 и 2500 кВА.

     Однако эти рекомендации не являются достаточно обоснованными вследствие быстроменяющихся цен на электрооборудование, и в частности, ТП.

     В проектной практике трансформаторы ТП часто выбирают по расчетной нагрузке объекта и рекомендуемым коэффициентам

     Важное значение при выборе мощности трансформаторов является правильный учет их нагрузочной способности. Под нагрузочной способностью трансформатора понимается совокупность допустимых нагрузок, систематических и аварийных перегрузок из расчета теплового износа изоляции трансформатора. Если не учитывать нагрузочную способность трансформаторов, то можно необоснованно завысить при выборе их номинальную мощность, что экономически нецелесообразно.

     На значительном большинстве подстанций нагруЗКа трансформаторов изменяется и в течение продолжительного времени остается ниже номинальной. Значительная часть трансформаторов выбирается с учетом послеаварийного режима и поэтому нормально они остаются длительное время недогруженными. Кроме того, силовые трансформаторы рассчитываются на работу при допустимой температуре окружающей среды, равной +40 °С. В действительности они работают в обычных условиях при температуре среды до 20... 30 °С. Следовательно, силовой трансформатор в определенное время может быть перегружен с учетом рассмотренных выше обстоятельств без всякого ущерба для установленного ему срока службы (20.. .25 лет).

     На основании исследований различных режимов работы трансформаторов разработан ГОСТ 1420985, регламентирующий допустимые систематические нагрузки и аварийные перегрузки силовых масляных трансформаторов общего назначения мощностью до 100 мВА включительно с видами охлаждения М, Д, ДЦ и Ц с учетом температуры охлаждения среды.

     Температура охлаждающей среды для определения допустимых систематических нагрузок принимается как эквивалентное значение для данной местности, вычисленное в соответствии с [24]. Для областных городов России, эквивалентная температура находится в пределах: 9,4...11 °С — годовая,3,4...6,7 °С — зимняя и 15,1...17,9 °С — летняя. При определении допустимых аварийных перегрузок температура охлаждающей среды принимается во время возникновения аварийной перегрузки.

     Для определения систематических нагрузок и аварийных перегрузок в соответствии с [24] необходимо также знать начальную нагрузку, предшествующую перегрузке, и продолжительность перегрузки. Эти данные определяются по реальному исходному графику нагрузки (полной мощности или току), преобразованному в эквивалентный в тепловом отношении прямоугольный двух или многоступенчатый график.

     В связи с необходимостью иметь реальный исходный график нагрузки расчет допустимых нагрузок и перегрузок в соответствии с [24] может быть выполнен для действующих подстанций.

     На стадии проектирования подстанций можно использовать типовые графики нагрузок или в соответствии с рекомендациями, также предлагаемыми в [24], выбирать мощность трансформаторов по условиям аварийных перегрузок согласно табл. 3.3.

     Тогда для подстанций, на которых возможна аварийная перегрузка трансформаторов (двухтрансформаторные, однотрансформаторные с резервными связями по вторичной стороне), если известна расчетная нагрузка объекта Sp и коэффициент допустимой аварийной перегрузки Кзав (табл. 3.3), номинальная мощность трансформатора определяется какСледует также отметить, что нагрузка трансформатора свыше его номинальной мощности допускается только при исправной и полностью включенной системе охлаждения трансформатора.

     Что касается типовых графиков, то на сегодняшний день они разработаны для ограниченного количества узлов нагрузок.

     Частично типовые графики отдельных видов потребителей (коммунальнобытовых и сельскохозяйственных) обработаны и для практического удобства сведены в табл. 3.4, 3.5 [25].

     В этих таблицах в сокращенном виде соответственно указаны интервалы допустимых нагрузок и аварийных перегрузок трансформаторов с естественным масляным охлаждением, напряжением 10/0,4 кВ, мощностью до 630 кВА для некоторых видов потребителей с учетом климатических условий России.

     По табл. 3.4 для необходимого вида нагрузки находится интервал минимальной и максимальной границы допустимой систематической нагрузки трансформатора (Samm...Samg), в котором находится величина расчетной нагрузки трансформатора Sp (для трансформаторов, определяет номинальную мощность трансформатора по допустимой нагрузке для нормального режима работы подстанции.

     По табл. 3.5 для соответствующего вида нагрузки устанавливается номинальная мощность трансформатора по допустимой аварийной нагрузке исходя из условия:

     В зависимости от возможных режимов работы трансформатора выбор мощности его осуществляется по табл. 3.4 или по табл. 3.4, 3.5.

     Поскольку выбор количества и мощности трансформаторов, в особенности потребительских подстанций 6—10/0,4—0,23 кВ, определяется чаще всего экономическим фактором, то существенным при этом является учет компенсации реактивной мощности в электрических сетях потребителя. Компенсируя реактивную мощность в сетях до 1 кВ, можно уменьшить количество ТП 10/0,4, их номинальную мощность. Особенно это существенно для промышленных потребителей, в сетях до 1 кВ которых приходится компенсировать значительные величины реактивных нагрузок. Существующая методика по проектированию компенсации реактивной мощности в электрических сетях промышленных предприятий предполагает выбор мощности компенсирующих устройств и одновременно — количества трансформаторов подстанций и их мощности.

     Таким образом, с учетом вышеизложенного, а также сложностей непосредственных экономических расчетов, быстроменяющихся стоимостных показателей строительства подстанций и стоимости электроэнергии выбор мощности силовых трансформаторов при проектировании новых и реконструкции действующих потребительских подстанций 6—10/0,4—0,23 кВ может быть осуществлен следующим образом: в сетях промышленных предприятий

     а)единичная мощность трансформаторов выбирается в соответствии с рекомендациями удельной плотности расчетной нагрузки и полной расчетной нагрузки объекта;

     б)количество трансформаторов подстанции и их номинальную мощность определяют согласно указаниям по проектированию

     компенсации реактивной мощности в электрических сетях промышленных предприятий [3] (см. также раздел 4.3);

     в)выбор мощности трансформаторов должен осуществляться с учетом рекомендуемых коэффициентов загрузки (табл. 3.2) и

     допустимых аварийных перегрузок трансформаторов (табл. 3.3);

     г)при наличии типовых графиков нагрузки выбор следует вести в соответствии с ГОСТ 1420985 [24] и с учетом компенсации реактивной мощности в сетях до 1 кВ;

     В городских электрических сетях

     а)располагая типовыми графиками нагрузки подстанции, выбор мощности трансформаторов следует выполнять в соответствии с ГОСТ 1420985 [24];

     б)зная вид нагрузки подстанции, при отсутствии типовых графиков ее целесообразно руководствоваться методическими указаниями института "Росэнергосетьпроект" [25], т.е. использовать данные табл. 3.4,3.5.


Рекомендуйте эту статью другим!



Применение сейсмостойких реле на АЭС
окт 06, 2013 2309

Применение сейсмостойких реле на АЭС

Современный этап эксплуатации электротехнического оборудования электрических станций…
нояб 30, -0001 6808

Особенности внутризаводского электроснабжения

Внутризаводское электроснабжение выполняется с применением радиальных и магистральных…
Что такое перенапряжение
фев 12, 2014 15785

Что такое перенапряжение? Виды перенапряжений и их опасность

Перенапряжение – это скачкообразное увеличение уровня напряженности в любой точке ЛЭП или…
дек 20, 2014 12478

Электрические машины высокого напряжения 3-10 кВ, конструкция, принцип работы, назначение

Электрические двигатели на высокое номинальное напряжение выпускаются мощностью от…
Основная система уравнивания потенциалов
янв 27, 2014 5509

Основная система уравнивания потенциалов

Система уравнивания потенциалов (СУП) используется для того, чтобы обеспечить одинаковый…