рис. 3.27Для конкретной серии микросхем характерно использование типового электронного узла  —  базового логического элемента. Этот элемент является основой построения самых разнообразных цифровых электронных устройств.

Ниже рассмотрим особенности базовых логических элементов различных логик.

Элементы транзисторно-транзисторной логики. Характерной особенностью ТТЛ является использование многоэмиттерных транзисторов. Эти транзисторы сконструированы таким образом, что отдельные эмиттеры не оказывают влияния друг на друга. Каждому эмиттеру соответствует свой p-n-переход. В первом приближении многоэмиттерный транзистор может моделироваться схемой на диодах (см. пунктир на рис. 3.27).

Упрощенная схема ТТЛ-элемента приведена на рис. 3.27. При мысленной замене многоэмиттерного транзистора диодами получаем элемент диодно-транзисторной логики «И-НЕ». Из анализа схемы можно сделать вывод, что если на один из входов или на оба входа подать низкий уровень напряжения, то ток базы транзистора Т2 будет равен нулю, и на коллекторе транзистора Т2 будет высокий уровень напряжения. Если на оба входа подать высокий уровень напряжения, то через базу Т2 транзистора будет протекать большой базовый ток и на коллекторе транзистора Т2 будет низкий уровень напряжения, т. е. данный элемент реализует функцию И-НЕ: uвых = u1 · u2. Базовый элемент ТТЛ содержит многоэмиттерный транзистор, выполняющий логическую операцию И, и сложный инвертор (рис. 3.28).

рис. 3.28

Если на один или оба входа одновременно подан низкий уровень напряжения, то многоэмиттерный транзистор находится в состоянии насыщения и транзистор Т2 закрыт, а следовательно, закрыт и транзистор Т4, т. е. на выходе будет высокий уровень напряжения. Если на обоих входах одновременно действует высокий уровень напряжения, то транзистор Т2 открывается и входит в режим насыщения, что приводит к открытию и насыщению транзистора Т4 и запиранию транзистора Т3, т. е. реализуется функция И-НЕ.

Для увеличения быстродействия элементов ТТЛ используются транзисторы с диодами Шоттки (транзисторы Шоттки).

Базовый логический элемент ТТЛШ (на примере серии К555). В качестве базового элемента серии микросхем К555 использован элемент И-НЕ. На рис. 3.29, а изображена схема этого элемента, а условное графическое обозначение транзистора Шоттки приведено на рис. 3.29, б.

рис. 3.29

Такой транзистор эквивалентен рассмотренной выше паре из обычного транзистора и диода Шоттки. ТранзисторVT4 — обычный биполярный транзистор.

Если оба входных напряжения uвх1 и uвх2 имеют высокий уровень, то диодыVD3 и VD4 закрыты, транзисторы VT1,VT5 открыты и на выходе имеет место напряжение низкого уровня. Если хотя бы на одном входе имеется напряжение низкого уровня, то транзисторы VT1 и VT5 закрыты, а транзисторы VT3 и VT4 открыты, и на входе имеет место напряжение низкого уровня. Полезно отметить, что транзисторы VT3 и VT4 образуют так называемый составной транзистор (схему Дарлингтона).

Микросхемы ТТЛШ серии К555 характеризуются следующими параметрами:

напряжение питания +5 В;

● выходное напряжение низкого уровня — не более 0,4 В;

● выходное напряжение высокого уровня — не менее 2,5 В;

● помехоустойчивость — не менее 0,3 В;

● среднее время задержки распространения сигнала — 20 нс;

максимальная рабочая частота — 25 МГц.

Микросхемы ТТЛШ обычно совместимы по логическим уровням, помехоустойчивости и напряжению питания с микросхемами ТТЛ. Время задержки распространения сигнала элементов ТТЛШ в среднем в два раза меньше по сравнению с аналогичными элементами ТТЛ.

Особенности других логик. Основой базового логического элемента ЭСЛ является токовый ключ. Схема токового ключа (рис. 3.30) подобна схеме дифференциального усилителя.

рис. 3.30

Необходимо обратить внимание на то, что микросхемы ЭСЛ питаются отрицательным напряжением (к примеру,  −4,5 В для серии К1500). На базу транзистора VT2 подано отрицательное постоянное опорное напряжение Uоп. Изменение входного напряженияuвх1 приводит к перераспределению постоянного тока iэ0, заданного сопротивлением Rэ между транзисторами, что имеет следствием изменение напряжений на их коллекторах. Транзисторы не входят в режим насыщения, и это является одной из причин высокого быстродействия элементов ЭСЛ.

Микросхемы серий 100, 500 имеют следующие параметры:

напряжение питания −5,2 В;

● потребляемая мощность — 100 мВт;

● коэффициент разветвления по выходу — 15;

● задержка распространения сигнала — 2,9 нс.

В микросхемах n-МОП и p-МОП используются ключи соответственно на МОП-транзисторах с n-каналом и динамической нагрузкой (рассмотрены выше) и на МОП-транзисторах с p-каналом.

В качестве примера рассмотрим элемент логики n-МОП, реализующий функцию ИЛИ-НЕ (рис. 3.31).

рис. 3.31

Он состоит из нагрузочного транзистора Т3 и двух управляющих транзисторов Т1 и Т2. Если оба транзистора Т1 и Т2 закрыты, то на выходе устанавливается высокий уровень напряжения. Если одно или оба напряжения u1и u2 имеют высокий уровень, то открывается один или оба транзистора Т1 и Т2 и на выходе устанавливается низкий уровень напряжения, т. е. реализуется функция uвых = u1 + u2. Для исключения потребления мощности логическим элементом в статическом состоянии используются комплементарные МДП — логические элементы (КМДП или КМОП-логика). В микросхемах КМОП используются комплементарные ключи на МОП-транзисторах. Они отличаются высокой помехоустойчивостью. Логика КМОП является очень перспективной. Рассмотренный ранее комплементарный ключ фактически является элементом НЕ (инвертором).

Рассмотрим КМОП — логический элемент, реализующий функцию ИЛИ-НЕ (рис. 3.32).

рис. 3.32

Если входные напряжения имеют низкие уровни (u1 и u2 меньше порогового напряжения n-МОП-транзистора Uзи.порог.n), то транзисторы Т1 и Т2 закрыты, транзисторы Т3 и Т4 открыты и выходное напряжение имеет высокий уровень. Если одно или оба входных напряженияu1и u2 имеют высокий уровень, превышающий Uзи.порог.n, то открывается один или оба транзистора Т1 и Т2, а между истоком и затвором одного или обоих транзисторов Т3 и Т4 устанавливается низкое напряжение, что приводит к запиранию одного или обоих транзисторов Т3 и Т4, а следовательно, на выходе устанавливается низкое напряжение. Таким образом, этот элемент реализует функцию uвых = u1 + u2 и потребляет мощность от источника питания лишь в короткие промежутки времени, когда происходит его переключение.

Интегральная инжекционная логика (ИИЛ или И2Л) построена на использовании биполярных транзисторов и применении оригинальных схемотехнических и технологических решений. Для нее характерно очень экономичное использование площади кристалла полупроводника. Элементы И2Л могут быть реализованы только в интегральном исполнении и не имеют аналогов в дискретной схемотехнике.

рис. 3.33

Структура такого элемента и его эквивалентная схема приведены на рис. 3.33, из которого видно, что транзистор T1 (p-n-p) расположен горизонтально, а многоколлекторный транзистор Т2 (n-p-n) расположен вертикально. Транзистор T1 выполняет роль инжектора, обеспечивающего поступление дырок из эмиттера транзистора T1 (при подаче на него положительного напряжения через ограничивающий резистор) в базу транзистора Т2. Если u1 соответствует логическому «0», то инжекционный ток не протекает по базе многоколлекторного транзистора Т2 и токи в цепях коллекторов транзистора Т2 не протекают, т. е. на выходах транзистора Т2 устанавливаются логические «1». При напряжении u1 соответствующем логической «1», инжекционный ток протекает по базе транзистора Т2 и на выходах транзистора Т2 — логические нули.

Рассмотрим реализацию элемента ИЛИ-НЕ на основе элемента, представленного на рис. 3.34 (для упрощения другие коллекторы многоколлекторных транзисторов Т3 и Т4 на рисунке не показаны). Когда на один или оба входа подается логический сигнал «1», то напряжениеuвых соответствует логическому нулю. Если на обоих входах логические сигналы «0», то напряжение uвых соответствует логической единице.

рис. 3.34

Логика на основе полупроводника из арсенида галлия GaAs характеризуется наиболее высоким быстродействием, что является следствием высокой подвижности электронов (в 3...6 раз больше по сравнению с кремнием). Микросхемы на основе GaAs могут работать на частотах порядка 10 ГГц и более.


Рекомендуйте эту статью другим!



Линейные и фазные <a href=
дек 15, 2013 6142

Линейные и фазные напряжения

Под симметричной трехфазной системой принято понимать совокупность трех ЭДС…
Указательные реле 3
мая 27, 2016 1866

Указательные реле: конструкция, использование и модификации.

Реле является важным устройством, используемым для коммутации электроцепей по внешнему…
Монтаж заземляющих устройств 2
июнь 30, 2014 2491

Заземляющие устройства, правила монтажа, глубина залегания, нормы установки

Защитное заземление представляет собой соединение с землёй металлических элементов…
Переменное магнитное поле 1
авг 04, 2014 7637

Переменное магнитное поле

Магнитное поле всегда возникает вокруг движущихся электрических зарядов, или при…
янв 22, 2013 2575

Развития коммутационных аппаратов, сравнение основных типов, характеристики

Эффективность функционирования электрической установки в значительной степени…