Емкость в цепи переменного тока 1     Рассмотрим классическую схему, в которой последовательно подключены: источник переменной ЭДС, активное сопротивление и конденсатор.

     Если бы в этой схеме был постоянный источник, конденсатор выполнил бы роль изолятора в силу своих конструктивных особенностей. В этом случае он бы просто зарядился за определенное время, и его потенциал на обкладках совпал бы с источником ЭДС. После этого ток в цепи стал бы равен нулю.

     Если же применить аналогичную схему с переменным источником, то ток продолжает «циркулировать» по проводникам – конденсатор подвергается периодической перезарядке. При этом возникающие на его обкладках электрические заряды постоянно меняют как абсолютную величину, так и знаки.

     Следует четко понимать, что никакие заряды через диэлектрик, расположенный между обкладками конденсатора, протекать не может. В то же время весьма распространен подход при расчете электрических схем, когда (условно) подразумевается, что через конденсатор протекает ток, соответствующий данному участку цепи.

     В переменных замкнутых цепях (для мгновенных значений) по прежнему действует классический закон Ома: ЭДС источника соответствует сумме падений напряжения на каждом участке цепи.

Емкость в цепи переменного тока 3

     Так как источник имеет переменную ЭДС с определенным периодом и частотой, сила тока в цепи, а также напряжение на конденсаторе изменяются в соответствие с гармоническими законами: конденсатор в первой и третьей четверти периода разряжается, и, соответственно, заряжается в течение других фаз.

     В то же время конденсатор оказывает определенное «сопротивление» прохождению по цепи переменного тока. Причем, чем больше его емкость, тем быстрее он перезаряжается, и соответственно, сила тока в цепи будет увеличиваться.

     При этом энергетические потери на самом конденсаторе, в отличие от активного сопротивления, практически равны нулю.

     На силу тока, «условно проходящего» через конденсатор, влияет и частота переменного источника ЭДС: понятно, что чем быстрее перезаряжается конденсатор, тем меньшее сопротивление он создает за единицу времени.

     Такое емкостное сопротивление определяется следующей формулой: 

Хс = 1/ωС,

     где С – емкость цепи, в Фарадах;

     - ω – частота сети,

Емкость в цепи переменного тока 2

     Способность конденсаторов создавать селективное реактивное сопротивление , в зависимости от частоты, широко используется в различных фильтрах.

     Например, чтобы преградить доступ низкочастотного сигнала в высокочастотную часть схемы, применяется последовательное подключение конденсаторов небольшой емкости.

     А для защиты блоков питания используются мощные электролилитеские конденсаторы, подключаемые по параллельной схеме.


Рекомендуйте эту статью другим!