Параметры стабилизаторов напряжения
Важнейшими параметрами стабилизатора напряжения являются коэффициент стабилизации Kст, выходное сопротивление Rвых и коэффициент полезного действия η.
Коэффициент стабилизации определяют из выражения Kст= [ ∆uвх/ uвх] / [ ∆uвых/ uвых]
где uвх, uвых — постоянные напряжения соответственно на входе и выходе стабилизатора; ∆uвх — изменение напряжения uвх; ∆uвых — изменение напряжения uвых, соответствующее изменению напряжения ∆uвх.
Чем больше коэффициент стабилизации, тем меньше изменяется выходное напряжение при изменении входного. У простейших стабилизаторов величина Kст составляет единицы, а у более сложных — сотни и тысячи.
Выходное сопротивление стабилизатора определяется выражением Rвых= | ∆uвых/ ∆iвых|
где ∆uвых— изменение постоянного напряжения на выходе стабилизатора; ∆iвых— изменение постоянного выходного тока стабилизатора, которое вызвало изменение выходного напряжения.
Выходное сопротивление стабилизатора является величиной, аналогичной выходному сопротивлению выпрямителя с фильтром. Чем меньше выходное сопротивление, тем меньше изменяется выходное напряжение при изменении тока нагрузки. У простейших стабилизаторов величина Rвых составляет единицы Ом, а у более совершенных — сотые и тысячные доли Ома. Необходимо отметить, что стабилизатор напряжения обычно резко уменьшает пульсации напряжения.
Коэффициент полезного действия стабилизатора ηст — это отношение мощности, отдаваемой в нагрузку Рн, к мощности, потребляемой от входного источника напряжения Рвх: ηст = Рн / Рвх
Традиционно стабилизаторы разделяют на параметрические и компенсационные.
Интересное видео о стабилизаторах напряжения:
Параметрические стабилизаторы
Являются простейшими устройствами, в которых малые изменения выходного напряжения достигаются за счет применения электронных приборов с двумя выводами, характеризующихся ярко выраженной нелинейностью вольт-амперной характеристики. Рассмотрим схему параметрического стабилизатора на основе стабилитрона (рис. 2.82).
Проанализируем данную схему (рис. 2.82, а), для чего вначале ее преобразуем, используя теорему об эквивалентном генераторе (рис. 2.82, б). Проанализируем графически работу схемы, построив на вольт-амперной характеристике стабилитрона линии нагрузки для различных значений эквивалентного напряжения, соответствующих различным значениям входного напряжения (рис. 2.82, в).
Из графических построений очевидно, что при значительном изменении эквивалентного напряжения uэ (на ∆uэ), а значит, и входного напряжения uвх, выходное напряжение изменяется на незначительную величину ∆uвых.
Определим основные параметры такого стабилизатора, для чего в исходной схеме стабилитрон заменим его эквивалентной схемой и введем во входную цепь (рис. 2.82, г) источник напряжения, соответствующий изменению входного напряжения ∆uвх (на схеме пунктир):
Rвых= rд|| R0≈ rд, т.к. R0>> rд ηст = ( uвых· Iн) / ( uвх· Iвх) = ( uвых· Iн) / [ uвх( Iн + Iвх) ].
Kст= ( ∆uвх/ uвх) : ( ∆uвых/ uвых) Так как обычно Rн>> rд Следовательно, Kст≈ uвых / uвх· [ ( rд+ R0) / rд]
Обычно параметрические стабилизаторы используют для нагрузок от нескольких единиц до десятков миллиампер. Наиболее часто они используются как источники опорного напряжения в компенсационных стабилизаторах напряжения.
Компенсационные стабилизаторы
Представляют собой замкнутые системы автоматического регулирования. Характерными элементами компенсационного стабилизатора являются источник опорного (эталонного) напряжения (ИОН), сравнивающий и усиливающий элемент (СУЭ) и регулирующий элемент (РЭ).
Напряжение на выходе стабилизатора или некоторая часть этого напряжения постоянно сравнивается с эталонным напряжением.
В зависимости от их соотношения сравнивающим и усиливающим элементом вырабатывается управляющий сигнал для регулирующего элемента, изменяющий его режим работы таким образом, чтобы напряжение на выходе стабилизатора оставалось практически постоянным.
В качестве ИОН обычно используют ту или иную электронную цепь на основе стабилитрона, в качестве СУЭ часто используют операционный усилитель, а в качестве РЭ — биполярный или полевой транзистор.
Чаще всего регулирующий элемент включают последовательно с нагрузкой. В этом случае стабилизатор называют последовательным (рис. 2.83, а).
Иногда регулирующий элемент включают параллельно нагрузке, и тогда стабилизатор называют параллельным (рис. 2.83, б. Здесь СУЭ и ИОН с целью упрощения не показаны). В параллельном стабилизаторе используется балластное сопротивление Rб, включаемое последовательно с нагрузкой.
В зависимости от режима работы регулирующего элемента стабилизаторы разделяют на непрерывные и импульсные (ключевые, релейные).
В непрерывных стабилизаторах регулирующий элемент (транзистор) работает в активном режиме, а в импульсных — в импульсном.
Рассмотрим типичную принципиальную схему непрерывного стабилизатора (рис. 2.84, а).
Эта схема соответствует приведенной выше структурной схеме последовательного стабилизатора. Для того чтобы выполнить наиболее просто анализ этой схемы на основе тех допущений, которые были рассмотрены при изучении операционного усилителя,изобразим эту схему по-другому. При этом цепи питания операционного усилителя для упрощения рисунка изображать не будем.
Из схемы (рис. 2.84, б) очевидно, что на элементах R2, R3, DA и VT построен неинвертирующий усилитель на основе ОУ с выходным каскадом в виде эмиттерного повторителя на транзисторе VT, а входным напряжением для него является выходное напряжение параметрического стабилизатора напряжения на элементах R1 и VD. В соответствии с указанными выше допущениями получаем:
uR3= uст, т.е. iR3· R3= uст
uR2 = uR3 – uвых
iR2 = − iR3 = − uст/ R3
Подставляя выражение для iR2 в предыдущее уравнение, получим − uст/ R3· R2= uст – uвых. Следовательно, uвых = uст· ( 1 + R2/ R3)
Последнее выражение в точности повторяет соответствующие выражения для неинвертирующего усилителя (входным напряжением является напряжение uст).
Полезно отметить, что ООС охватывает два каскада — на операционном усилителе и на транзисторе. Рассматриваемая схема является убедительным примером, демонстрирующим преимущество общей отрицательной обратной связи по сравнению с местной.
В конце 60-х годов стали выпускать интегральные микросхемы компенсационных стабилизаторов напряжения с непрерывным регулированием (серия К142ЕН). В эту серию входят стабилизаторы с фиксированным выходным напряжением, с регулируемым выходным напряжением и двухполярным и входным и выходным напряжениями. В тех случаях, когда через нагрузку необходимо пропускать ток, превышающий предельно допустимые значения интегральных стабилизаторов, микросхему дополняют внешними регулирующими транзисторами.
Некоторые параметры интегральных стабилизаторов приведены в табл. 2.1, а вариант подключения к стабилизатору К142ЕН1 внешних элементов — на рис. 2.85.
Резистор R предназначен для срабатывания защиты по току, а R1 — для регулирования выходного напряжения. Микросхемы К142УН5, ЕН6, ЕН8 являются функционально законченными стабилизаторами с фиксированным выходным напряжением, но не требуют подключения внешних элементов.
Импульсные стабилизаторы напряжения в настоящее время получили распространение не меньшее, чем непрерывные стабилизаторы.
Благодаря применению ключевого режима работы силовых элементов таких стабилизаторов, даже при значительной разнице в уровнях входных и выходных напряжений можно получить КПД, равный 70 − 80 %, в то время как у непрерывных стабилизаторов он составляет 30 − 50%.
Малые потери в силовых элементах приводят к уменьшению или даже исключению охлаждающих радиаторов, что значительно уменьшает массогабаритные показатели. Кроме того, использование импульсного стабилизатора позволяет в ряде случаев исключить из схемы силовой трансформатор, работающий на частоте 50 Гц, что также улучшает показатели стабилизаторов.
К недостаткам импульсных источников питания относят наличие пульсаций выходного напряжения.
Рассмотрим импульсный последовательный стабилизатор напряжения (рис. 2.86).
Ключ S периодически включается и выключается схемой управления (СУ) в зависимости от значения напряжения на нагрузке. Напряжение на выходе регулируют, изменяя отношение tвкл / tвыкл, где tвкл, tвыкл — длительности отрезков времени, на которых ключ находится соответственно во включенном и выключенном состояниях. Чем больше это отношение, тем больше напряжение на выходе.
В качестве ключа S часто используют биполярный или полевой транзистор.
Диод обеспечивает протекание тока катушки индуктивности тогда, когда ключ выключен и, следовательно, исключает появление опасных выбросов напряжения на ключе в момент коммутации. LC-фильтр снижает пульсации напряжения на выходе.
Ещё одно интересное видео о стабилизаторах: