Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Пример HTML-страницы

Стандарт нормирует допустимые отклонения напряжения на вводах ЭП. Существует ряд мощных ЭП, присоединенных непосредственно к сетям 6–20 кВ (в основном, СД), однако основная масса ЭП получает питание от сетей 0,4 кВ. Поэтому возможности РН в этих сетях имеют первостепенное значение. Трансформаторы 35–220/6–20 кВ имеют устройства РПН, позволяющие регулировать напряжение на шинах 6–20 кВ по заданному закону. При этом для компенсации потерь напряжения в линиях 6–20 кВ наиболее 313 высокое напряжение на шинах 6–20 кВ трансформатора должно поддерживаться в режиме больших нагрузок и наиболее низкое – в режиме малых нагрузок.

Распределительные трансформаторы 6–20/0,4 кВ кроме номинального ответвления имеют четыре регулировочных ответвления с количеством витков первичной обмотки, уменьшенным на 2,5 и 5 % и увеличенным на те же величины, что позволяет изменять коэффициент трансформации Kт . Однако для изменения регулировочного ответвления необходимо отключить РТ от сети, поэтому такие изменения могут делаться лишь периодически (например, посезонно), а в течение суточного изменения нагрузок ответвления остаются постоянными.

Изменение напряжения на шинах 0,4 кВ трансформатора, происходящее при изменении ответвления, зависит от рабочего напряжения на шинах 6–20 кВ – U1 . В табл. 8.6 приведены коэффициенты трансформации и относительные добавки напряжения ∆Ет на шинах 0,4 кВ, соответствующие указанным ответвлениям при разных напряжениях на шинах 6–20 кВ.

Таблица 8.6

Регулировочные характеристики РТ 6–20/0,4 кВ

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

 

До 1992 г. в России стандартным напряжением низковольтных сетей считалось напряжение 220/380 В, поэтому расчетные значения добавок напряжения ∆Ет по отношению к этому напряжению были на 5 % выше и составляли от 0 до +10 %. В настоящее время в соответствии с международными стандартами установлено напряжение 230/400 В (прил. 8).

Так как значения ∆Ет незначительно изменяются в широком диапазоне изменения U1 , в практических расчетах часто используют их расчетные значения – округленные величины, соответствующие изменению числа витков первичной обмотки трансформатора. Для проведения более точных расчетов отклонений напряжения на шинах 0,4 кВ при известном значении U1 необходимо пользоваться непосредственно коэффициентами трансформации.

Методы расчета закона РН на шинах 6–20 кВ ЦП и выбора регулировочных ответвлений РТ 6–20/0,4 кВ рассмотрим на примере условной схемы линии 6–20 кВ, приведенной на рис. 8.19, а. В режиме максимальной нагрузки напряжение в линии снижается по мере удаления от ЦП. Его снижение на шинах 0,4 кВ РТ показано штриховой линией на рис. 8.19, б. РТ имеют пять регулировочных ответвлений, позволяющих изменять напряжение с шагом 2,5 %.

В линиях 0,4 кВ необходимо поддерживать напряжение, обеспечивающее допустимые отклонения ± 5 % у всех ЭП, присоединенных к линии. При этом у ближайшего ЭП (А1 ) необходимо поддерживать отклонение напряжения, максимально близкое к +5 %, чтобы у удаленного ЭП (Б1 ) оно не вышло за нижний допустимый предел –5 %. Поэтому на шинах ЦП в режиме максимальной нагрузки необходимо поддерживать отклонение напряжения выше +5 % на величину потерь напряжения от шин ЦП до ближайшего ЭП сети 0,4 кВ, %:

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

На этом РТ и других, находящихся в зоне потерь напряжения от ∆U с.б до (∆U с.б + 2,5) % устанавливают первое рабочее ответвление с ∆Ет = –5 %, в зоне потерь напряжения от (∆U с.б + 2,5) % до (∆U с.б + 5) % – второе рабочее ответвление, и т. д. В результате эпюра напряжения на шинах 0,4 кВ РТ имеет вид пилообразной линии 1 на рис. 8.19, б.

Напряжение у ближайших ЭП, присоединенных к РТ, находящихся в начале каждой зоны, поддерживается близким к +5 %. Допустимые потери напряжения в линиях 0,4 кВ могут достигать 10 % и при этом отклонение напряжения у удаленных ЭП не выйдет за –5 %. В конце зоны отклонение напряжения у ближайшего ЭП уже не может превысить +2,5 %, поэтому в этих линиях 0,4 кВ допустимые потери напряжения не должны превышать 7,5 %. Так как в течение эксплуатации потери напряжения в режиме максимальной нагрузки сети изменяются, приходится периодически изменять и ответвления РТ. При этом конкретный РТ может попадать в различные места своей и смежной зоны. В связи с этим допустимые потери напряжения в линиях 0,4 кВ при их проектировании не должны

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Рис. 8.19. Упрощенная схема линии 10 кВ и эпюры напряжения

превышать 7,5 %. Эпюра напряжения у удаленных ЭП (Б1 – БN + 1) отражается пилообразной линией 2.

В режиме минимальной суточной нагрузки потери напряжения во всех элементах сети снижаются, а рабочие ответвления РТ остаются прежними. При неизменном напряжении в ЦП отклонение напряжения на шинах 0,4 кВ РТ будет повышаться по мере удаления от ЦП. Для того, чтобы привести напряжение у ЭП АN (ближайший ЭП в сети 0,4 кВ РТ, присоединенного в точке Д, находящейся в начале зоны последнего ответвления) к +5 %, необходимо снизить напряжение в ЦП до δU ЦП (рис. 8.19, в). Диапазон dр.н = δU ЦП – δU ЦП называют диапазоном РН в ЦП; регулирование, при котором наиболее высокое напряжение поддерживается в режиме максимальной суточной нагрузки, а наименьшее – в режиме минимальной нагрузки, называют встречным РН.

Нагрузки РТ могут иметь различные по форме графики. Наряду с коммунально-бытовой нагрузкой с ярко выраженным вечерним максимумом от сети питаются предприятия, максимальная нагрузка которых приходится на дневные часы. Потери напряжения в линиях 0,4 кВ РТ, нагрузка которых в режиме максимальной нагрузки сети не максимальна, снижаются. Напряжение у удаленных ЭП таких РТ отражается эпюрой 3 на рис. 8.19, б; при этом возникает запас относительно уровня –5 %. В режиме же малой суммарной нагрузки сети, когда напряжение в ЦП приходится снижать по условиям основной массы потребителей, нагрузки таких РТ возрастают, и эпюра напряжения у удаленных ЭП этих РТ имеет вид 3 на рис. 8.19, в. При этом отклонение напряжения у ряда ЭП выходит за предел –5 %. В наилучшем положении оказываются РТ, подключенные к точке Д, напряжения на вводах которых поддерживаются постоянными во всех режимах.

Встречное РН осуществляется по графику нагрузки ЦП, который формируется всеми потребителями. Поэтому при разнородных графиках нагрузки РТ закон регулирования в большей или меньшей степени не соответствует ни одному потребителю. Степень несоответствия для конкретного потребителя будет тем больше, чем меньше доля потребителей с подобным графиком в общей нагрузке и чем более отличен их график от графика основной массы потребителей.

С позиции распределения неоднородных нагрузок сети 6–20 кВ можно разбить на три группы:

  • сети с относительно однородными нагрузками РТ;
  • сети с неоднородными нагрузками линий, отходящих от ЦП (межлинейная неоднородность), при этом внутри каждой линии нагрузки однородны;
  • сети с неоднородными нагрузками, присоединенными к общей линии 6–20 кВ (внутрилинейная неоднородность).

 

В сетях с однородными нагрузками РТ допустимые отклонения напряжения у всех ЭП, присоединенных к сетям 0,4 кВ, могут быть обеспечены с помощью РН в ЦП и соответствующего выбора рабочих ответвлений РТ. Единственным условием является непревышение допустимых потерь напряжения в сетях 6–20 кВ (сети среднего напряжения) и 0,4 кВ (сети низкого напряжения). В сети среднего напряжения они не должны превышать 12,5 % (10 % – максимальные возможности компенсации потерь с помощью ответвлений РТ плюс 2,5 % – допустимые потери в последней зоне за точкой Д, рис. 8.19), а в сетях низкого напряжения – 7,5 %.

В сетях со значительной межлинейной неоднородностью обеспечить допустимые режимы напряжения на шинах 380 В всех РТ с помощью РН в ЦП нельзя. Единственным способом здесь является выделение наиболее неоднородной линии на отдельное регулирующее устройство (вольтодобавочный трансформатор). Если в ЦП находятся два трансформатора с РПН и по условиям надежности электроснабжения допустима их раздельная работа по стороне 6–20 кВ, целесообразно разделить линии на две группы с относительно однородными нагрузками и подключить их к разным шинам.

Для улучшения режима напряжения у неоднородных потребителей в линиях с внутрилинейной неоднородностью необходимо использовать средства местного регулирования, в качестве которых применяют конденсаторные установки. Подключение таких установок снижает потери напряжения и соответственно повышает его уровень при том же рабочем ответвлении РТ. Степень повышения зависит от реактивного сопротивления сети по отношению к точке подключения. Регулирующие эффекты конденсаторов мощностью 100 квар на трансформаторах 6–20/0,4 кВ и линиях 0,4 кВ приведены в табл. 8.7.

Таблица 8.7

Регулирующие эффекты конденсаторных установок для различных элементов сети

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Регулирующие эффекты на участках сетей 6–20 кВ практически незначимы. Устанавливать конденсаторные установки целесообразно в глубине сети 0,4 кВ, особенно в случае ВЛ 0,4 кВ. Здесь может оказаться достаточной небольшая мощность установки (в зарубежных странах используются конденсаторы наружной установки на опорах ВЛ). Такие устройства могут быть установлены в линиях с неоднородными нагрузками, подключенных к РТ и расположенных близко к ЦП, или линиях с однородными нагрузками, подключенных к РТ и расположенных в зоне последнего ответвления.

Напряжение в линиях с неоднородными нагрузками, подключенных к РТ и расположенных близко к ЦП, повышается. В первом случае это происходит за счет снижения потерь напряжения в самих линиях 0,4 кВ (табл. 8.7) – при этом поднимается линия 3 на рис. 8.19, в, – а во втором случае можно отказаться от установки следующего ответвления на РТ в последней зоне (штриховая линия на рис. 8.19, г), обеспечив повышение напряжения в ЦП в режиме малой нагрузки сети.

Дискретность ступеней регулирования трансформатора в ЦП оказывает существенное влияние на режимы напряжения в сети. Трансформаторы с РПН 35 и 220 кВ имеют ступень регулирования ∆Ет = 1,5 %, а 110 кВ – 1,78 %. Поэтому при срабатывании РПН напряжение во всех точках сети скачкообразно изменяется на величину ступени. Обычно достаточно нескольких срабатываний РПН за сутки.

На обслуживаемых подстанциях переключения могут производиться дежурным персоналом, на необслуживаемых подстанциях – дистанционными исполнительными устройствами или устройствами автоматического регулирования. Для предотвращения обратных срабатываний устанавливаемая в устройстве зона нечувствительности регулирования ε должна быть больше ступени регулирования. Чем больше разность ε – ∆Ет , тем реже срабатывает регулирующее устройство, но тем более грубым оказывается регулирование. Для обеспечения компромисса между частотой срабатывания РПН и точностью регулирования зону нечувствительности следует принимать на 0,5–0,7 % больше ступени регулирования.

Некоторые специалисты считают, что для обеспечения нормируемых отклонений напряжения необходимо проектировать сети на допустимые потери напряжения, сниженные относительно приведенных выше величин 12,5 % и 7,5 % на величину зоны нечувствительности регулирования, то есть как минимум на 2 %. Учитывая вероятностный характер изменения напряжения и допустимость его нахождения в течение 1 ч 12 мин в сутки в зоне до ±10 %, такое условие представляется слишком жестким. Вместе с тем снижение допустимых потерь напряжения до 11,5 % и 6,5 % представляется экономически оправданным. Необходимый диапазон РН в ЦП зависит от максимальных потерь напряжения в сети 6–20 кВ, определяющих число используемых регулировочных ответвлений РТ (Nо ), и от диапазона изменения нагрузки в течение суток, характеризуемого коэффициентом kмин . Диапазон РН можно определить по формуле

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Необходимые диапазоны РН в ЦП при различных значениях потерь напряжения в сети 6–20 кВ и коэффициента kмин приведены в табл. 8.8.

Таблица 8.8

Диапазоны регулирования напряжения в ЦП

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Используемые в настоящее время устройства автоматического регулирования напряжения в ЦП реализуют линейный закон РН в ЦП в зависимости от токовой нагрузки ЦП. Однако линейный закон не является наилучшим, особенно при неоднородных нагрузках РТ. Оптимальный закон можно получить, рассчитав для каждого часа суток требуемые отклонения напряжения в ЦП при соответствующих каждому часу нагрузках РТ и суммарной нагрузке сети. Один из полученных таким образом законов РН показан на рис. 8.20. Расчеты показывают, что чем больше неоднородность нагрузок РТ и чем ближе к ЦП расположены РТ с неоднородными нагрузками, тем больше необходимый закон регулирования напряжения в ЦП отличается от линейного. При современном уровне развития цифровой техники создание регулятора, реализующего такие законы регулирования, не представляется слишком трудной задачей.

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Рис. 8.20. Нелинейный закон регулирования напряжения в центре питания

Ниже (в примере 8.3) проведен подробный расчет по выбору закона РН на шинах 10 кВ ЦП фидера 10 кВ и рабочих ответвлений РТ 10/0,4 кВ. В случае если в ЦП фидеров 10 кВ установлен трансформатор 35/10 кВ без РПН, РН на его шинах 10 кВ возлагается на трансформатор 110/35 кВ с РПН. Методика расчета закона РН на шинах 35 кВ трансформатора 110/35 кВ и выбора оптимальных рабочих ответвлений трансформаторов 35/10 кВ без РПН изложена ранее в п. 6.2.5.

Пример 8.3. На рис. 8.21 изображен фидер 10 кВ, над участками которого указаны потери напряжения в режиме наибольших нагрузок, %. Наименьшая нагрузка фидера составляет 30 % от наибольшей (kмин = 0,3). Потери напряжения в каждом РТ 10/0,4 кВ в режиме наибольших нагрузок приняты равными 1,7 %. Максимальные потери напряжения в линиях 0,4 кВ составляют 7 %. Допустимые отклонения напряжения δU+ = +5 % и δU– = –5 %. Требуется рассчитать закон РН на шинах 10 кВ ЦП.

Решение. Потери напряжения от шин 10 кВ ЦП до шин 0,4 кВ каждого РТ в режиме наибольших нагрузок составляют:

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Максимальный уровень напряжения на шинах ЦП определяется условиями РТ 1. Для того чтобы отклонение напряжения на шинах 0,4 кВ этого РТ составляло +5 %, на шинах ЦП оно должно быть равным δU ЦП = δU+ + ∆U 1 – ∆Ет1 = 5 + 2,5 – (–5) = 12,5 %.

Такое превышение напряжения на шинах ЦП недопустимо по условиям работы изоляции. Необходимо снизить его как минимум до 10 %. Для этого на РТ 1 придется установить не первое ответвление с ∆Ет1 = –5 %, а второе с ∆Ет2 = –2,5 %. Если на РТ 2–5 также установить второе ответвление, то отклонения напряжения на шинах 0,4 кВ РТ 1–5 составят:

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Учитывая, что ступень РН на РТ 10/0,4 кВ составляет 2,5 %, поднять напряжения к уровню +5 % с помощью установки следующего рабочего ответвления можно лишь на РТ 4 и 5 (на остальных РТ при такой установке оно будет выше +5 %). При установке на этих РТ третьего ответвления с ∆Ет3 = 0 % получим δU 4 = 10 – 6,0 – 0 = = 4,0 % и δU 5 = 10 – 6,9 – 0 = 3,1 %.

Если в линиях 0,4 кВ РТ 3 и 5 есть небольшая потеря напряжения от шин РТ до ближайших ЭП (порядка 0,6 %), то на РТ 3 можно установить третье ответвление с ∆Ет3 = 0 %, а на РТ 5 – четвертое с ∆Ет4 = +2,5 %. Тогда на шинах 0,4 кВ обоих РТ будет +5,6 %, а у ближайших ЭП +5 %. В этом случае номера рабочих ответвлений 35–220 кВ 6–10 кВ 0,4 кВ 0,4 кВ 1 бб 1 бу Отв. 1 Отв. N Сеть 380/220 Сеть 380/220 1 уб 1 уу ∆Uл ∆Uт ∆Uт ∆Uн ∆Uн 4 3 0,8 % 2б 0,6 % 1,3 % 1,6 % 0,9 % 2у 1 2 3 4 5 322 на РТ 1–5 составят 2, 2, 3, 3, 4 с ∆Ет = –2,5; –2,5; 0; 0; +2,5 %; отклонения напряжения на шинах 0,4 кВ РТ составят:

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

 

а у удаленных ЭП на 7 % меньше:

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Наиболее низкое напряжение (–3 %) наблюдается в удаленной точке сети 0,4кВ РТ 4. Оно не выйдет за предел –5%, если напряжение в ЦП будет снижено на 2 % и составит 10 – 2 = 8 %. Эта величина и является нижней границей диапазона РН в режиме наибольших нагрузок. Отклонения напряжения у всех ЭП сетей 0,4 кВ не выйдут за допустимые пределы в режиме наибольших нагрузок, если отклонение напряжения на шинах ЦП в этом режиме будет поддерживаться в диапазоне от +8 до +10 %.

В режиме малых нагрузок сети потери напряжения уменьшатся до 30 % от потерь в режиме больших нагрузок. Отклонения напряжения на шинах РТ с учетом регулировочных ответвлений составят:

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Наиболее высокое напряжение наблюдается на шинах РТ 5, который является критичным для напряжения в ЦП в режиме малых нагрузок. Напряжение на шинах ЦП необходимо снизить на 5,43 % и поддерживать на уровне δU ЦП = 10 – 5,43 = 4,57 %.

Отклонения напряжения на шинах РТ режиме малых нагрузок сети составят:

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормыРегулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

а у удаленных ЭП:

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Наиболее низкое напряжение (–0,96 %) наблюдается в удаленной точке сети 0,4 кВ РТ 2. Оно не выйдет за предел –5%, если напряжение в ЦП будет снижено на 4,04 % и составит Vм1 = 4,57 – 4,04 = = 0,53 %. Эта величина и является нижней границей диапазона РН в режиме малых нагрузок.

В результате требования к РН в ЦП формулируются следующим образом: отклонение напряжения на шинах ЦП в режиме больших нагрузок сети должно поддерживаться в диапазоне от +8 до +10 %, а в режиме малых нагрузок сети – в диапазоне от до +0,53 до +4,57 %, в промежуточных режимах – в соответствии с линейной зависимостью от нагрузки. При этом закон регулирования напряжения в ЦП представляется не одной линией, как на рис. 6.2 и 8.20, а в виде зоны отклонений напряжения (рис. 8.22).

Следует отметить, что приведенные выше расчеты с точностью до второго знака после запятой совершенно не соответствуют точности исходных данных. Поэтому в практических задачах их можно округлять до 0,5 %.

Регулирование напряжения в распределительных сетях 6–20 и 0,4 кВ: нормы

Рис. 8.22. Закон регулирования напряжения в центре питания сети 10 кВ


Понравилась статья? Поделиться с друзьями:
Все об энергетике, электротехнике и электронике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: